
MATHEMATICS OF COMPUTATION
Volume 68, Nu-mber 227, Pages 1179-1186
S 0025-5718(99)01084-4
Article electroi-ically published oin February 8, 1999

COMPUTING AUTOMORPHISMS
OF ABELIAN NUMBER FIELDS

VINCENZO ACCIARO AND JURGEN KJLUNERS

ABSTRACT. Let L = Q(a) be an a,belian number field of degree n. Most
algorithms for computing the lattice of subfields of L require the computation
of all the conjugates of ce. This is usually achieved by factoring the minimal
polynomial m, (x) of ce over L. In practice, the existing algorithms for factoring
polynomials over algebraic number fields can handle only problems of moderate
size. In this paper we describe a fast probabilistic algorithm for computing
the conjugates of ce, which is based on p-adic techniques. Given m., (x) and a
rational prime p which does not divide the discriminant disc(m, (x)) of ni, (x),
the algorithm computes the Frobenius automorphism of p in time polynomia.l
in the size of p and in the size of m, (x). By repeatedly applying the algorithm
to randomly chosen primes it is possible to compute all the conjugates of ce.

1. INTRODUCTION

Let us assuine that L =Q(a) is an abelian number field of degree ni over ,
given by the minimal polynomial ma (x) of a over Q, and without loss of generality
let us assume that a C 0, the ring of algebraic integers of L. The computation of
the automorphisms of L over Q is equivalent to the computation of all conjugates
of a C L. Clearly, one can compute these conjugates by factoring m,(x) over L.

The factorization of ma (x) over L is computed using general purpose algorithms,
which do not take into account the Galois structure of L. For example, H. W.
Lenstra states [12, Corollary 3.3] that there is a polynomial time algorithm that,
given a polynomial f(x), decides whether the splitting field of f(x) is abelian and
determines the Galois group G if C is abelian and f(x) is irreducible. The proof
is based on the observation that a transitive abelian permutation group of degree
n has order n_ Moreover, if f(x) is reducible, then G is abelian if and only if the
Galois group of each irreducible factor is abelian. For monic irreducible f(x), the
polynomial factorization algorithm of S. Landau [9] is applied to f(x) over the field

Q[x]/f(x)Q[x] in order to determine its Galois group.
However, Lenstra's observation does not imply a very efficient algorithm to test

whether f(x) is abelian. In fact, our experience in experiments conducted with
PARI, Maple and KASH on a Sun 20 workstation suggests that none of the al-
gorithms implemented in these packages for factoring polynomials over finite non-
trivial extensions of (Q can be used to solve large problems. This fact should not
surprise us, if we consider the complexity of the existing factorization algorithms
over algebraic number fields.

Received by the editor December 6, 1995 and, in revised form, July 29, 1996.
1991 Mathematics Subject Classificatiotn. Primary 1R37; Secondary llY40.
Key words and phrases. Computational number theory, abelian number fields, automorphisms.

(?)1999 Ailmericaln Mathellmatical Society

1179

1180 VINCENZO ACCIARO AND JURGEN KLUNERS

Many of the existing algorithms for computing the lattice of subfields of L require
the expensive factorization of ma (x) over L. The subfield algorithm described in
[7] does not require factorizations of polynomials over number fields. However, in
the abelian case efficiency issues still suggest that we should use the conjugates of
a for the computation of the subfields of L.

In this paper we propose a new technique for computing the conjugates of a root
a of a monic abelian irreducible polynomial ma(x), which works well in practice
even with polynomials of large size.

Given ma(x) and a rational prime p which does not divide the discriminant
disc(m,(x)), the algorithm returns an automorphism of L = Q(a) over Q known
as the Frobenius automorphism of p.

By repeatedly applying the algorithm to randomly chosen primes smaller than
some bound b, it is possible to compute all the conjugates of a. In ?2.6 we will
show that such a bound b exists, and we will give some estimates for it.

A meaningful analysis of the expected number of times that the algorithm has
to be executed, with randomly chosen primes below b, in order to find all the
conjugates of a, would require one to assume a very large bound b. For, in this
case, the Chebotarev Density Theorem tells us that the primes mapping to a fixed
element of the Galois group of L are approximately equidistributed in the set of
primes smaller than b.

Therefore we restrict ourselves to showing that, for a fixed prime p, the algorithm
runs in time polynomial in the size of p and in the size of ma (x).

The algorithm described in this paper has been implemented using the number
theory package KASH [5], developed in Berlin by Prof. M. Pohst and his collabo-
rators.

For the terminology and the basic concepts of algebraic number theory used in
this paper we refer the reader to [11].

2. DESCRIPTION OF THE METHOD

Let p be a rational prime which does not divide the discriminant disc(ma(x)),
and let ',P , 21 denote the prime ideals of (9 lying above p. Let f = n/r denote
the degree of inertia of 'i (1 < i < r).

Let C be the Frobenius automorphism of PI . It is well known that the Frobenius
automorphisms of the prime ideals above p are conjugate to each other. Since the
Galois group of L over Q is abelian, it follows that C turns out to be the Frobenius
automorphism of 'P22 ,. - P as well. For this reason C is called simply the Frobenius
automorphism of p. Now, by definition

ar(a) _=vaP (mod)...P . , ar(a) =_ aP (mod 'Pr)

and therefore

(1) u(a) =_ P (mod p0)

Let go(x) c Z[x] with deg go(x) < n, such that -go (a) =_ aP (mod p0). The
polynomial go(x) can be computed efficiently as follows. Let x denote the image
of x in (Z/pZ)[x]/m,(x)(Z/pZ)[x]. Take for go(x) the representative of xP in Z[x]
whose coefficients are positive and bounded by p.

We know that m,(u(a)) = 0, and it is clear that ma(go (a)) E p0. In order to
find C we will use p-adic lifting. Thus, for k = 1,2, ... we would like to compute an
integral polynomial gk(x) of degree less than n such that ma(gk(Ce)) E p2 0. We

AUTOMORPHISMS OF ABELIAN NUMBER FIELDS 1181

will show in ?2.5 that, when k is large enough, it is possible to recover U(ca) from
gk (ai)

2.1. Automorphisms in (Z/pZ)[x] /m<(x)(Z/pZ)[x]. Our aim is to compute all
the automorphisms of L. The p-adic lifting of the computed FRobenius automor-
phisms in l/p0 is the most expensive part of our algorithm. We want to avoid
this lifting if there is no new contribution to the group of automorphisms.

Let o be an automorphism of L which is represented in the form o = g(a) with
g(x) = EIJo a7x2 EC Q[x]. We call g(x) the polynomial representation of o. In
the usual way, for C, D, U, M E Z with (D, M) = 1 we define C/D _ U (mod M)
if C _ DU (mod Ml). Then a is the image of a in (Z/pZ)[x]/rna(x)(Z/pZ)[x].
There is a unique representation of a by -(x) = -aix, where -ai- (mod p).
This definition makes sense because p does not divide the denominator of ai. Let
A be a list of computed automorphisms of L and a an automorphism which is
known in (Z/pZ)[x]/m,,(x)(Z/pZ)[x]. We want to check if a belongs to A. Define
A{= { I T E A}.

Lemma 1. a belongs to A if and only if the polynomial representation of a coin-
cides with one of the polynomial representations of an automorphism of A.

Proof. If a = T the polynomial representations of a and T coincide. Let a1,... ,
be the zeros of m,a(x) and a1,... ,-a,, be the zeros of ma(x) _ m,,(x) (mod p).
Since n (x) has no double roots, there is an isomorphism between a. and -a-, and
it follows that U and T coincide if C and T coincide. D

2.2. Applying automorphisms. We represent an automorphism U by its image
on a; thus we have -U(a) = Ejn- 1 a oa2. Let T(a) -?j= bi&a2 be another automor-
phism. We want to compute the image of UT on a. We have

UT (a) - U(E b-a') = E bio (a').
i=O i=O

The most expensive part is the computation of U(a2) or U(a)2. If we want to apply
U- more than once, then we have to save the images of U on a' (0 < i ?< n - 1). The
proof of the next lemma is immediate.

Lemma 2. In order to apply an automorphism U to an element T, we need n - 2
multiplications of algebraic numbers for the initialization of the automorphism, and
n multiplications of a rational number times an algebraic number for the application
of the automorphism.

2.3. p-adic lifting. We show now how to perform the p-adic lifting. We want to
use quadratic Newton lifting (see [10, pages 308-311] and [6, Appendix B]).

Let /3o Eijf bo,joea be an approximation of a zero of m.a(x) modulo p. Since
p 1 disc(m,(x)) we can compute an element w0 which satisfies wom' (/0o) =1
(mod p0), using the extended-gcd algorithm for polynomials over finite fields.

In the following we construct two sequences of algebraic integers {/Sk} and {UWk}
which satisfy the relations:

(i) /3k+1= /3k (mod p2 k
0),

(ii) Wk+1 - Wk (mod p2 k0)

(iii) Mnc,(k) 0 (mod p2),

(iV) Wkmn (jk) =1 (mod p2

1182 VINCENZO ACCIARO AND JURGEN KLUNERS

This can be done by the following double iteration:

(i) 3k+1- /k - Wk7na.(/k) (mod p2kll)

(ii) Wk+1 Wk[2 - wkrn' (3k+1)1 (mod p2 kO)

We remark that it is possible to compute 3k by the following simple iteration:

m(3k) 2k?1
(3k+1- (k- mnj3k) (mod p0).

The double iteration has the advantage that we avoid the time-consuming division.

2.4. An upper bound for the number of iterations. Let d be the largest
positive integer whose square divides disc(m(cx)). It is well known that U C

(1/d)Z[a]. We want to find a positive integer B such that all the conjugates of a
can be expressed as m(x)/d, where the coefficients of m(x) E Z[x] are bounded in
absolute value by B. This gives us an upper bound for the number of iterations of
our algorithm, for we can stop the lifting process as soon as p2 > 2B2 (Lemma 4),
that is, after [log logp 2B2] iterations. Let m,,(x) = an,x?I+a7-lx1I-l+. . .+alx+ao,

where by hypothesis a. C Z for i = O,... ,n and a7 = 1. Recall that 1m(x)J is
defined to be the Euclidean length of rnm(x), that is, (E`' a 2)1/2, and Jrn7,(x)lm,x
is defined to be the height of m, (x), that is, inaxi a For the proof of the following
lemma we refer the reader to [9, Theorem 1.3].

Lemma 3. Let a1 = a,.. ., an denote the conjugates of a.

Let ah = (l/d) E>niVI chjaJ, with ch, EC 7. Then Ich,jI < B for 0 < j < n, 1 <
h < n, where

(2) B = d(1 + ma(x) imax)n(n - 1)(n-l)/2 ima (x)[ln-l disc(ma (x)) 1-l/2

Note that the theoretical bound B given by Lemma 3 is a bit too conservative,
and in practice it is possible to use some heuristic bounds which are much smaller
[15, p. 332]. We remark that we do not compute d. We only need it to derive the
theoretical bound B.

2.5. Recovering a. So far we have shown how to compute, for each k = 0, 1,....
a polynomial gk(X) E Z[x] such that cr(a) gk(a) (mod p2 0). Without loss of
generality we can assume that gk(x) has positive coefficients smaller than p2 k. The
next lemma tells us how to recover a rational number C/D from a modulo M/I
approximation. For its proof, and the related algorithm, we refer the reader to [41.

Lemma 4. Let U, A/M C N be such that (U, M) = 1. Then there excists an efficient
algorithm to compute a pair of integers (C, D) such that C _ DU (mod M) with
D > 0 and IC ,D < M/2, if such a pair exists. Otherwise, an indication of
failure is returned.

Now we are able to compute the polynomial g(x) corresponding to Cv. We recover
the polynomial g coefficientwise from gk by Lemma 4. We remarked that the bound
B grossly overestimates the size of the numerator of the coefficients of g(x). One
approach in practice is to compute g(x) from gk (x) after each step and check if
mC, (g (a)) = 0; however this is not a good idea since the test is very expensive if
g(a) is not a zero of ma. A better way is to determine g(x) after each iteration
and compare this g(x) with the g(x) computed at the previous iteration. We only
need to check m,,(g(a)) = 0 if g(x) remains invariant.

AUTOMORPHISMS OF ABELIAN NUMBER FIELDS 1183

2.6. Termination of the algorithm. Since the Galois group G of L over (Q acts
transitively on the set of roots of m, (x), it follows that, if we are given a root a3. of
mc,(x), there is exactly one element T of G such that T (a) = aj. Hence, we are able
to determine all the conjugates of a as soon as the Frobenius elements computed so
far form a complete set of generators of G. Therefore, the average number of Frobe-
nius elements that must be computed is equal to the average number of elements
that must be selected from G in order to obtain a complete set of generators.

Even if the structure of G is not known, the estimates in [1] show that for an
abelian group G the average number of elements that must be selected from G in
order to generate G is very close to the minimal number t(G) of generators of G.

If n = p, with pi distinct primes, then clearly t(G) < = e.
Now, by the Chebotarev Density Theorem [11, Theorem 10, p. 169] the primes

mapping to a fixed element of G have density 1/ Gl = 1/n.
Even if we do not know how to select at random a Frobenius automorphism cx,

it is possible to show that there exists a positive number b, depending on the field
L, such that each element of the Galois group of L is the Frobenius automorphism
of some prime p < b. Effective bounds for b have been extensively studied in [8].

The best possible estimates for b are obtained by assuming the validity of a
long-standing conjecture in number theory, known as the Extended Riemann Hy-
pothesis (ERH). If we assume the ERH, then the following lemma is an immediate
consequence of the explicit formulas of Bach and Sorenson [2, Thm. 5.1]:

Lemma 5 (ERH). Each element of the Galois group of L is the Frobenrius auto-
morphism of some prime p < (4 log IdL | + 2.5n + 5)2.

Clearly, larger values of b yield a better sampling of the elements of G, that is, a
distribution of the Frobenius elements which is closer to the uniform distribution.

Note that the knowledge of the structure of G could be used to handle some
particular instances of the problem very efficiently. For example, if n is squarefree
then G is cyclic, and there are exactly b(n) generators of G. It can be shown [14,
Exercise 1, p. 266] that for n > 3 we have b(n)/n > c(loglogn)-> for some c > 0,
and hence a generator of G can be found by random sampling in G in an expected
number 0(loglogn) of trials. Therefore, when n is squarefree it is advisable to
search first for a prime p whose degree of inertia is equal to n, and then compute
its Frobenius automorphism, which clearly generates G.

3. EXAMPLES

Let L be the abelian number field generated by a root of the polynomial mc, (x)
x16 -112x14+4532x12 -83472x10+730358x8 -2962896X6 +4936148x4 -2507824X2+
28561. The Galois group is isomorphic to C2 x C2 x C2 x C2. This is the hardest
abelian group of order 16, since it requires at least four generators. In other words,
we have to compute at least four Frobenius automorphisms. We computed all the
automorphisms in 2.0 seconds on a HP 735 using KASH 1.8 under HP-UX 9.01.
We print one nontrivial automorphism to give an idea of the size of the coefficients.
This automorphism sends a to

013 (-
1460330046379a + 3045184412874a3 -- 1986742065521a5 165905131392

+ 506400762490a 7 - 58437366385a9 + 3179647862a11

- 78588459ca13 + 701446a 15).

1184 VINCENZO ACCIARO AND JURGEN KLUNERS

|p I a I [- I degree time]
2 1 2 2 0.2 s g p I a iimen egree,
2 1 3 4 0.4is 3 1w1 2 o. 2
2 1 4 8 0.3 s 3 12 6 O.2s
2 1 5 1 6 O.8 s 3 1 3 1 8 0.4 s
2 1 6 32 12.8s 3 1 4 54 14.l1s
2 1 7 64 103 s 3 1 5 168 536 s
2 1 8 128 1224 s
2 1 9 256 55685 s

We can compute the automnorphism group of abelian fields of much higher degree,
as the following examples, which were given to us by F. Nicolae, show. Let

f (t) := tP- -pa and g(t) := tP-pat

with p prime, a e Z and p t a. We define

fn.(t) := g(f (t),
where f: f(f 1) is defined recursively. What are the specializations for p and
a such that the Galois group Gal(fA) is abelian for all n eI N? If we let p = 2
and a 1, we get the 2"i cyclotomic fields. We computed some examples for
p = 2, a 1 and p = 3, a = 1 (see the tables above).

The computing times in the second table (p = 3) are slightly better since these
fields are cyclic. In the first table (p = 2) the Galois group is isomorphic to
C2 x C2,.-2.

4. COMPLEXITY ISSUES

In this section we will discuss the cost of computing the Frobenius automorphism
associated to a prime p.

For the sake of efficiency it is advisable to carry out the computation of gk (X),
at the kth iteration of the lifting process, in the finite ring

(Z/p2 k') [X] /Tma (x) (Z/p2)k) [X],

in order to avoid an unacceptable growth of the coefficients involved. This is al-
lowed, since if gk(x) =Thj b.x' e E[x] satisfies r'n- (gk (x)) 0 (mod p2kQ), then

any l(x) = 3t O cixi e Z[x] such that ci _ bi (mod p2 k) for i = ,... ,n -1
satisfies rm,(l(x)) 0_ (mod p 2k0), as well.

If k C M, k > 0, let us assume that the multiplication of two elemeents of
W/p2 kZ requires 0(log2 p2 k) bit operations, and that the multiplication of two ele-
ments of (W/p2kZ)[X]/Bn2(X)(W/p2kZ)[x] requires 0(n2 log2 p2 k) bit operations.

Let us consider first the cost of computing v. The computation of afjP is carried
out using the binary powering algorithm (see [3, p.8]); hence this step requires
O (log p) multiplications in (Z/pZ) [x]/ma(x) (Z/pZ) [c'j, and therefore O(?t2 log3 p)
bit operations. The next step consists in the initialization of the automorphism C

(Lemma 2). This step requires n - 2 multiplications of two elements of

(Z/pz) [XI In'1a. (X) (Z/pz) [xI,

and therefore O(n3 log2 p) bit operations. In order to apply the automorphism
C we need n2 multiplications of two elements of Z/pZ, and hence O(n2log2p)

AUTOMORPHISMS OF ABELIAN NUMBER. FIELDS 1185

bit operations. In the worst case the computation Of 7 requires ((nlog3 p) bit
operations.

Let us consider now the computation of the inverse of rn' (g, (a)) modulo p0. We
compute it by applying the extended Euclidean gcd algorithm to two polynomials
in (Z/pZ) [x] of degree n and n - 1. Euclid's algorithm needs (nm2) multiplications
of two elements of Z/pZ, and therefore 0(n2 log2 p) bit operations.

Let us consider next the cost of the p-adic lifting. It is clear that the cost of the
kth iteration is dominated by the cost of computing rm, (gk- I(a)). Using Horner's

rule, this task requires 0 (n) operations in the ring (Z/p2k Z) [x] /ma (x) (Z/p2k Z) [x].

The update of wk requires 0(n) operations in (Z/p2k) [x] /mT, (x) (Z/p2k Z) [x], too.
Hence (nm322k log2 p) bit operations are required at the ktth iteration.

If s iterations are required, then the overall cost of the lifting is

0((n3 log2 p(4 + 42 +.. + 4-1 + 4s))

bit operations, that is, 0(n3 (log2 p)45+?) bit operations. Now, if we let

s= [log(logp2B2)] = [log ((log2+2logB)/logp)],

we obtain 0(n 3 (log2 B)) bit operations.
Finally, Mahler's bound on the discriminant of a polynomial [13, p. 261] shows

that, if=ma(x) >Oix ithen Idisc(mn(x)) < n` O al)2m 2,and hence
d < ?7,/2(1 0 1al)(2-2)/2. Therefore the cost of computing C from gs(x) is
dominated by the cost of computing g,(x), and we obtain an overall complexity of

0((3 (log2 B) + log3 p))

bit operations. By applying Lemma 3 we conclude that the algorithm runs in time
polynomial in the size of p and of mT, (x), for a givenwp.

ACKNOWLEDGMENT

The first author wishes to thank Prof. V.L. Plantamura for his support.

REFERENCES

[1] V. Acciaro, The probability of generating some common families of finite groutps, Utilitas
Mathematica 49 (1996), 243-254. MR 97c:20106

[2] E. Bach and J. Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65
(1996), 1717-1735. MR 97a:11143

[3] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin,
1993. MR 94i:11105

[4] G.E. Collins and M.J. Encarnaci6n, Efficient rational number reconstruction, J. Symb. Com-
put. 20 (1995), 287-297. MR 97c:11116

[5] M. Daberkow, C. Fieker, J. Kliiners, M. Pohst, K. Roegner, M. Sch6rnig, K. Wildanger,
KANT V4, J. Symb. Comput. 24 (1997), 267-283. CMP 98:05

[6] J.D. Dixon, Computing subfields in algebraic number fields, J. Austral. Math. Soc. 49 (1990),
434-448. MR 91h:11156

[7] J. Kliiners and M. Pohst, On computing subfields, J. Symb. Comput. 24 (1997), 385-397.
MR 98k:11161

[8] J.C. Lagarias and A.M. Odlyzko, Effective versions of the Chebotarev density theorem, Al-
gebraic number fields (A. Fr6hlich, ed.), Academic Press, 1977, 409-464. MR 56:5506

[9] S. Landau, Factoring polynomials over algebraic number fields, SIAM J. Comput. 14 (1985),
184-195; errata, ibid. 20 (1991), 998. MR 86d:11102; MR 92f:11181

[10] S. Lang, Algebra, Addison-Wesley, Reading, Massachusetts, 1984. MR 86j:00003
[11] S. Lang, Algebraic Number Theory, 2nd ed., Springer-Verlag, Berlin, 1994. MR 95f:11085

1186 VINCENZO ACCIAR.O AND JURGEN KILUNERS

[12] H.W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992),
211-244. MR 93g:11131

[13] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964),
257-262. MR 29:3465

[14] M. Mignotte, Mathematics for Computer Algebra, Springer-Verlag, New York, 1992. MR
92i:68071

[15] P.S. Wang, Factoring multivariate polynomials over algebraic number fields, Math. Comp.
30 (1976), 324-336. MR 58:27887a

[16] M.E. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge University
Press, Cambridge, 1989. MR 92b:11074

DIPARTIMENTO DI INFORMATICA, UNIVERSITA DEGLI STUDI DI BARI, VIA E. ORABONA 4, BARI

70125, ITALY
E-mail address: acciaro@di .uniba. it

UNIVERSITAT HEIDELBERG, IM NEUENHEIMER FELD 368, 69120 HEIDELBERG, GERMANY

E-mail address: k1ueners@iwr.uni-heidelberg.de

